ON INCLUSION RELATIONS FOR SPACES OF AUTOMORPHIC FORMS
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1. INTRODUCTION

Let T be a Fuchsian group, that is a discontinuous group of
Moebius transformations of the unit disk D onto itself, and let
F be a fundamental domain of T with area 3F = 0. For q = 1,2,.--
and 1 <p < =, let Ag(r) denote the space of functions g(z)

analytic in D that satisfy

(1.1> g(p(2))¢'(2)4 = g(z) (¢ €T)
and
(1 - |2]2P¥2|g(2)|P axdy < » if 1< <
(1.2 F
sup (1 - |z|)%)g(2)] < = if p = .
433

The integral is independent of the choice of the fundamental domain
F; the supremum is not changed if we replace F by D. The spaces
Aé(r) and A:(r) (q = 2,3,+++) are of particular interest in the
theory of Fuchsian and Kleinian groups [11,[2],[u4].

Several authors (for instance [31,[81,[101,[6]1) have

considered the problem whether
(1.3) AP(r) ¢ A™(D) (L <p< .
q q =
Rajeswara Rao [10] has shown that, for q > 1,
(1.4) AP(I) c A(r) for some < APl(F) c A?Z(F) for 1< < <
Mg q a Pe®= q SRR

Hence it suffices to consider the case p = 1.
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J. Lehner [5] has recently proved (1.3) for the case that there
exists a constant vy = y(I') > 0 such that

inf d(z,¢(z)) > v for all hyperbolic ¢ €T,
z€D

where d denotes the non-euclidean distance. He uses A. Marden's
results on universal properties of Fuchsian groups [7]. 1In
particular, it follows that (1.3) holds if T is any subgroup of a
finitely generated group.

We shall show that (1.3) is not true without some restriction

on T.

THEOREM 1. There exists a Fuchsian group T such that
(1.5) Ai(I‘) ¢ AT(T)

and therefore that

(1.6) AD(T) ¢ A(D) (1< p <.

To see that (1.5) implies (1.6) we choose a function
geAi(I‘)\A‘;(I‘). Then g? € AL(I)\ A(T), and (1.6) follows
from (1.4). It is a pleasure to acknowledge conversations with A.
Marden and L.Greenberg on this counterexample.

In the last section we establish a generally valid inclusion
relation (with q = 1) in which Ai(r) is replaced by a somewhat

different space.

2. THE COUNTEREXAMPLE
The function f(z) is called a Bloch function if it is analytic

in D and satisfies

(2.1) sup (1 - |z[®)[|£f'(2)]| < =.
z€D
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We shall need the classical characterization in terms of schlicht

disks on the Riemann image surface (see, e.g., [9]):

LEMMA. 4n analytic function is not a Bloeh function if and only if,
for every p < to, it maps some domain in D one-to-one onto a diek

of radius p.

It will be convenient to integrate condition (1.1L) which, for

q = 1, becomes g(¢(z))¢9p'(z) = g(z). The function
z

(2.2) f(z) = J g(r) dg (z ¢ D)
0

is not, in general, automorphic but has periods c(¢) that

satisfy
(2.3) f(¢(2)) = £(z2) + c(¢) (¢ € T).

It follows from (1.2) and (2.1) that A;(F) consists of the
derivatives of the Bloch functions for which (2.3) holds. Hence

Theorem 1 is contained in the following theorem.

THEOREM 2. There exists a Fucheian group of the second kind and a

non~-Bloch funetion £(z) satisfying (2.3) for which

(2.4) ”If'(z)l2 dx dy < =,
F

The Fuchsian group T is of the second kind if the set of limit
points on 9D is of measure zerc; this is true if and only if D/T
is a bordered Riemann surface. In particular, our group is of
convergence type.

We give first an outline of our construction. Let
(2.5) B= U{0<Rew< 38" "< Imw< 2™} U U {0<Rew< 3", Inw = 2"},
n=l o n=2

We attach a different copy of B suitably translated to each
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vertical side of B. ., Then we attach a new translated copy to each
free vertical side of the resulting surface, and so on. We obtain a
simply connected Riemann surface R that contains schlicht domains

over each horizontal strip

(2.6) Vo= (2" < Imw < Py (n=1,2,000)

of width 2". Hence the Lemma shows that the function f£(z) mapping
D onto R is not a Bloch function. Furthermore R is invariant
under a group of "translations" which corresponds to a Fuchsian group
I' in D, and some fundamental domain F of T 1is mapped one-to-one

onto B. Hence (2.4) is satisfied because area B < «,
Proof. Let T be the free group generated by (o) __ .
_ n'n=l,2,+°*

Thus each element of T can be uniquely written as a reduced word

(2.7 T =g teeeg ¥ (k. = tl; k... #-k. if n_ = n
nl n

where t 1is the length of 1. We define R as the disjoint union

(2.8) R = U (B,1)
T€T

of "copies" of B. Every element W € R can be uniquely written as
w = (w,t) with w € B and T of the form (2.7), and we define

-nv

~ t ~o
(2.9) pw) = w+ ] k3 (w € R).

v=1

Given w, = (WO,T) € R, we set Dy = {]w - wOI <8} (>0

sufficiently small) and define a neighbourhood of %0 by (DO,T) if

Rew, # 0, and by

0
-n -1
(2.10) (D0 n B,t) U ([D0 +3°71n B,Tcn )
if Rewy = 0, 2" < Imw, < 2™1 Then p(a) maps each of our

neighbourhoods one-to-one onto a disk in €, and R together with
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the global parameter p is a Riemann surface which we denote again
by R.

We show now that R 1is simply connected. Let C be a
(piecewise smooth) closed curve on R; we may assume that C
intersects (B,id). Let Tt be a reduced word (of the form (2.7)) of
maximal length such that C c¢rosses the boundary 28(B,t) of (B,1).

Then C crosses 3(B,t) only on points on 3(B,t') where

k k
1t = g Yeeeg ©71, Since B is simply connected and 3(B,t) N 3(B,1')

n n

1 t-1
is connected we can find a curve C' homotopic to C that does notcross
3(B,7). Now the reduced word Tt' has length t-1. Repeating this
process we see that C is homotopic to a curve in (B,id) and

therefore to a point.

Given A € T we define a conformal selfmapping »* of R by

~

w = (w,T) =~ 2w = (WyoAt).

These mappings form a group ™ isomorphic to T. Also, by (2.9),

~ L -m j 3
(2.11) poX*GH =pt) + J 3.3 Y (A= teera By

vz1 Y my mz

Since R 1is simply connected and has free boundary arcs there
is a function h(z) that maps D conformally and one-to-one onto

R. If A* ¢ T* then
(2.12) $ = h

maps D one-to-one onto D and is analytic, hence a Moebius

transformation. Thus
T={¢ : A" ¢

(&)
is a Fuchsian group with fundamental domain T = h l(B,id). Since
F has free boundary arcs on 8D the group I 1is of the second

kind.
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The complex-valued function f = p o h 1is analytiec in D and

satisfies, by (2.12) and (2.11),
*
fo¢=por oh=poh+c=Tf+c

where ¢ = c(¢) 1is a constant. Thus (2.3) is satisfied. By (2.9),

f(z) maps some domain in D one-to-one onto the strip Vn defined

in (2.6). Since width Vn = 2" + w, the Lemma shows that f£(z) is

not a Bloch function. Finally £(z) maps F one-to-one onto B,

and it follows that

2 . = 7 (2 -
G!|f'(z)| dx dy = areaB = Z (3) <=

3. AN INCLUSION RELATION

We prove now a different version of (1.3) (with q = 1). I want

to thank the referee for his helpful comments.

THEOREM 3. Let T be a Fuchsian group. Let £f(z) be analytic in

D and

(3.1) £(¢(2)) = £(2) + cl(¢) (p €T).
If, for some fundamental domain F,

(3.2) d = diam f(F) < =

then £(z) <8 a Bloch function.

Our new condition (3.2) neither implies nor is implied by condi-
tion (2.4). It is not clear whether Theorem 3 has an analogue for
q > 2. The quantity Jdiamf(F) depends on the choice of F but

remains unchanged if we replace F by ¢(F) (¢ €T).

Proof. Suppose that £(z) is not a Bloch function. Then, by

the Lemma, there exists a domain H ¢ D mapped homeomorphically by
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£(z) onto a disk {|w - w,| < 5d}. Let

H=f1({|w-w,| < 4d}) n H.

ol
Note that H, the relative closure of H in D, is compact and

homeomorphic to {|w - wy| < 4d} under £(z). Also, if X c D is

connected and satisfies

(3.3) KnHEZD f(K) € {|w - w,| £ 3d}

ol
then K ¢ H. TFor otherwise, K must contain a boundary point of H,
and so f(XK) contains a point of 3f(H) = {|w - w,| = 4d}, contra-
dicting (3.3).

Let 2z, be the preimage of Wy in H, and let F be a funda-

mental domain for [ which satisfies (3.2) and zg € T. Clearly

(3.4) £(F) © {Jw - wy| < d}.

ol
Thus F satisfies (3.3), and we conclude that F c H.

Let ¢1(F) (¢1 € T) be a fundamental domain adjoining F. By
(3.1), (3.2), and (3.4) we see that f(¢l(?)) c {|w - WOI < 2d};
and (3.3) then yields ¢1(f) c H. Since £f(z) 4is univalent on H,
we must have c(¢1) # 0. Let

§= U £ = U [£(F) + ncp)].
née€z né€zZ

Then S 1lies within an infinite strip of width at most d and so
cannot cover {|w - wol < yd} = £(H). Since f(z) is a homeomor-
phism on H, we can find another fundamental domain ¢2(F) (¢2 €T
adjoining F for which f(¢2(f)) ¢ S. As before, c(¢,) # 05 and

we clearly have
(3.5) Im [c(¢q) / c(¢2)] £ 0.

Because ¢1(F) and ¢2(F) adjoin F, the set
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A=TFU $,(F) U ¢2<F) 0] ¢lo¢2<F) U ¢2-o¢1(?)

is connected. A moment's thought reveals that f(A)c{} w - woj < 3d}.
Thus, by (3.3), A € H. Since f£f(z) is univalent in H, we

conclude from
f(¢lo¢2(z)) = f(z) + c(¢1) + c(¢2) = f(¢20¢1(z)) (z € H)

that ¢10¢2(z) = ¢20¢1_(z) for =z € H. But then ¢10¢2 = ¢20¢l by
the identity theorem.

Thus the subgroup of T generated by ¢l and ¢2 is abelian,
hence cyclic [6; p.14]1. It follows that its homomorphic image
{nlc(¢l) + n2c(¢2) : ny,n, € 7z} is also cyelic, and thus contradicts
(3.9).
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