
ON INCLUSION RELATIONS FOR SPACES OF AUTOMORPHIC FORMS 

CH , POMMERENKE 

i. INTRODUCTION 

Let F be a Fuchsian group, that is a discontinuous group of 

Moebius transformations of the unit disk D onto itself, and let 

F be a fundamental domain of F with area 8F = 0. For q = 1,2,... 

and 1 ~ p ~ ~, let A~(F) denote the space of functions g(z) 

analytic in D that satisfy 

(I.I) g(r162 q : g(z) (r (r) 

and 

(1.2) 

f(1 - Izl2)pq-21g(z)IP dxdy < | 

F 

sup ( ~  - i~I~qlg(z>l < - 

zEF 

if i < p < | 

if p : =. 

The integral is independent of the choice of the fundamental domain 

F; the supremum is not changed if we replace F by D. The spaces 

AI(F) and A~(F) (q = 2,3,...) are of particular interest in the 
q q 

theory of Fuchsian and Kleinian groups [1],[2],[4]. 

Several authors (for instance [3],[8],[10],[6]) have 

considered the problem whether 

( 1 . 3 )  A ~ ( r )  r A ~ ( r )  ( l  ~ p < |  

Rajeswara Rao [I0] has shown that, for q > i, 

Hence it suffices to consider the case p = i. 
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THEOREM I. 

(1.5) 

J. Lehner [5] has recently proved (1.3) for the case that there 

exists a constant y = y(F) > 0 such that 

inf d(z,r I Y for all hyperbolic r E F, 
z~D 

where d denotes the non-euclidean distance. He uses A. Marden's 

results on universal properties of Fuchsian groups [7]. In 

particular, it follows that (1.3) holds if F is any subgroup of a 

finitely generated group. 

We shall show that (1.3) is not true without some restriction 

on r. 

There exists a Fuchsian group F such that 

2(r) ~ A~(r) A 1 

and therefore that 

(1.6) A~(r) r A~(r) (1 ~ p < |  

To s e e  t h a t  ( 1 . 5 )  i m p l i e s  ( 1 . 6 )  we c h o o s e  a f u n c t i o n  

A ~ ( r ) \ A ~ ( F ) .  Then g2 E A ~ ( F ) \ A ~ ( r ) ,  and  ( 1 . 6 )  f o l l o w s  g E 

from (1.4). It is a pleasure to acknowledge conversations with A. 

Marden and L.Greenberg on this counterexample. 

In the last section we establish a generally valid inclusion 

relation (with q = I) in which A~(F) is replaced by a somewhat 

different space. 

2. THs COUNTs163 

The function f(z) 

in D and satisfies 

(2.1) 

is called a Bloch function if it is analytic 

sup (1 - Izl  If' z)l < | 

z~D 
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We shall need the classical characterization in terms of schlicht 

disks on the Riemann image surface (see, e.g., [9]): 

LEMMA. An analytic function is not a Bloch function if and only if, 

for every p < +% it maps some domain in D one-to-one onto a disk 

of radius p. 

It will be convenient to integrate condition (l.l) which, for 

q = i, becomes g(r162 = g(z). The function 

I; f(z) : g(~) d~ (z E D) 

in general, automorphic but has periods c(r that 

(2.2) 

is not, 

satisfy 

(2.3) f(r = fCz) + c(r (r E F). 

It follows from (1.2) and (2.1) that AT(F) consists of the 

derivatives of the Bloch functions for which (2.3) holds. Hence 

Theorem i is contained in the following theorem. 

THEOREM 2. There exists a Fuchsian group of the second kind and a 

non-Bloch function f(z) satisfying (2.$) for which 

[I,f'(z)l 2 dxdy < | (2.4) 

F 

The Fuchsian group F is of the second kind if the set of limit 

points on aD is of measure zero; this is true if and only if D/F 

is a bordered Riemann surface. In particular, our group is of 

convergence type. 

We give first an outline of our construction. Let 

(2.5) B : U {0 < Rew < 3 -n, 2 n < Imw < 2 n+l} U U {0 < Row < 3 -n, Imw : 2n}. 
n=l n=2 

We attach a different copy of B suitably translated to each 
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vertical side of B. Then we attach a new translated copy to each 

free vertical side of the resulting surface~ and so on. We obtain a 

simply connected Riemann surface R that contains schlicht domains 

over each horizontal strip 

(2.6) V = {2 n < Imw < 2 n+l} (n = 1,2,...) 
n 

of width 2 n. Hence the Lemma shows that the function f(z) mapping 

D onto R is not a Bloch function. Furthermore R is invariant 

under a group of "translations" which corresponds to a Fuchsian group 

F in D, and some fundamental domain F of F is mapped one-to-one 

onto B. Hence (2.4) is satisfied because area B < ~. 

Proof. Let T be the free group generated by (~n)n=l,2,... 

Thus each element of T can be uniquely written as a reduced word 

kl.. g k t  
( 2 . 7 )  T : a n l  �9 n t  ( k  = •  k + 1 ~ - k  i f  n = n + l )  

where t is the length of T. We define R as the disjoint union 

(2.8) R : U (B,~) 
TET 

of "copies" of B. Every element w ~ R can be uniquely written as 

w = (w,T) with w ~ B and T of the form (2.7), and we define 

t -n 9 
(2.9) p(~) = w + [ k 3 (w E R). 

~=i 

Given ~0 = (W0'T) E R, we set D O = {lw - w01 < 6} (6 > 0 

sufficiently small) and define a neighbourhood of w 0 by (D0~T) if 

Rew 0 ~ 0, and by 

(2.10) (D O N B~T) U ([D O + 3 -n] N B,rqn I) 

if Rew 0 = 0, 2 n < Imw 0 < 2 n+l, Then p(~) maps each of our 

neighbourhoods one-to-one onto a disk in C, and R together with 
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the global parameter p is a Riemann surface which we denote again 

by R. 

We show now that R is simply connected. Let C be a 

(piecewise smooth) closed curve on R; we may assume that C 

intersects (B,id). Let T be a reduced word (of the form (2.7)) of 

maximal length such that C crosses the boundary 8(B,T) of (B,T). 

Then C crosses ~(B,T) only on points on ~(B,T') where 

k I kt_ 1 
T' = onl...qnt_l. Since B is simply connected and ~(B,T) n B(B,T') 

is connected we can find a curve C' homotopic to C that does r~tcross 

B(B,T). Now the reduced word T' has length t-l. Repeating this 

process we see that C is homotopic to a curve in (B,id) and 

therefore to a point. 

Given ~ ~ T we define a conformal selfmapping ~ of R by 

w = (w,T) + ~*(w) : (w,~). 

These mappings form a group ~ isomorphic to T. Also, by (2.9), 

~ ~ -m ]I.. J~ 
"~m~ (2.11) p o ~(w) = p(w) + ~ j 3 ~ (~ = ~ml ). 

~=i 

Since R is simply connected and has free boundary arcs there 

is a function h(z) that maps D confoFmally and one-to-one onto 

R. If h e E T ~ then 

(2.12) r = h -I 0 k ~ o h 

maps D one-to-one onto D and is analytic, hence a Moebius 

transformation. Thus 

r : {r : ~ E T ~} 

O 

is a Fuchsian group with fundamental domain F = h-l(B,id). Since 

F has free boundary arcs on 8D the group F is of the second 

kind. 
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The complex-valued function f = p o h is analytic in D and 

satisfies, by (2.12) and (2.11), 

foe :pol oh=po h+c = f+c 

where c = c(r is a constant. Thus (2.3) is satisfied. By (2.9), 

f(z) maps some domain in D one-to-one onto the strip V defined 
n 

in (2.6). Since width V = 2 n § =, the Lemma shows that f(z) is 
n 

not a Bloch function. Finally f(z) maps F one-to-one onto B, 

and it follows that 

fF~If'(z)12dxdy = areaB = ( ) < =. 
n=l 

3 .  AN INCLUSION RELATION 

We prove now a different version of (1.3) (with q = 1). I want 

to thank the referee for his helpful comments. 

THEOREM 3. Let r be a Fuohsian group. Let f(z) be analytic in 

D and 

(3.1) f(r = f(z) + c(r (r ~ F). 

If, for some fundamental domain Fj 

(3.2) d = diam f(F) < = 

then f(z) is a Bloch function. 

Our new condition (3.2) neither implies nor is implied by condi- 

tion (2.4). It is not clear whether Theorem 3 has an analogue for 

q ~ 2. The quantity d~am f(F) depends on the choice of F but 

remains unchanged if we replace F by ~(F) (r E F). 

Proof. Suppose that f(z) is not a Bloch function. Then, by 

the Lemma, there exists a domain ~ c D mapped homeomorphically by 
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f(z) onto a disk {lw - w01 < 5d}. Let 

H : f-l({[w - w01 < 4d}) n ~. 

Note that H, the relative closure of H in D, is compact and 

homeomorphic to {lw - w01 ~ 4d} under f(z). Also, if K c D is 

connected and satisfies 

(3.3) K n H ~ ~ f(K) c {lw - w01 ~ 3d} 

then K c H. For otherwise, K must contain a boundary point of H~ 

and so f(K) contains a point of 8f(H) = {[w - w01 = 4d}, contra- 

dicting (3.3). 

Let z 0 be the preimage of w 0 in H, and let F be a funda- 

mental domain for F which satisfies (3.2) and z 0 ( ~. Clearly 

(3.4) f(~) c {lw - w01 ~ d}. 

Thus ~ satisfies (3.3), and we conclude that F c H. 

Let el(F) (r E F) be a fundamental domain adjoining F. By 

(3.1), (3.2), and (3.4) we see that f(r c {]w - w01 ~ 2d}; 

and (3.3) then yields r c H. Since f(z) is univalent on H, 

we must have c(r # 0. Let 

S = U f(r = U If(F) + nc(r 
nEZ nEZ 

Then S lies within an infinite strip of width at most d and so 

cannot cover {]w - w01 < 4d} = f(H). Since f(z) is a homeomor- 

phism on H, we can find another fundamental domain r (r E F) 

adjoining F for which f(r ~ S. As before, c(r ~ 0; and 

we clearly have 

(3.5) Im [c(r / c(r # 0. 

Because el(F) and r adjoin F, the set 
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A : ~ U el(F) U r U r162 U r162 

is connected. A moment's thought meveals that f(A) c {I w - w01 ~3d}. 

Thus, by (3.3), A c H. Since f(z) is univalent in H, we 

conclude from 

f(r = f(z) + c(r I) + c(~ 2) = f(~2Or (z E H) 

that ~io$2(z) = $2o~i(z) for z E H. But then ~io~2 = ~2o~i by 

the identity theorem. 

Thus the subgroup of F generated by r and $2 is abelian, 

hence cyclic [6; p.14]. It follows that its homomorphic image 

{nlc(r I) + n2c(r 2) : nl,n 2 ( Z} is also cyclic, and thus contradicts 

(3.S). 
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